This page contains a Flash digital edition of a book.
PASSIVHAUS CASE STUDY BUSHBURY HILL PRIMARY SCHOOL


To achieve Passivhaus status, the design team at Bushbury Hill Primary School had to target unregulated energy use in the kitchen and produce a super-airtight, insulated envelope that wouldn’t overheat. Andy Pearson explains how Architype and E3 stepped up to the challenge


H


aving successfully completed a series of low-energy school designs for Wolverhampton City Council, the architect-engineer design team


of Architype and E3 Consulting Engineers set out to raise the bar with their next project: Bushbury Hill Primary School. The team set out to design the new school to Passivhaus standards. In addition to meeting the rigorous technical demands of the Passivhaus Institute, the client insisted that a Passivhaus scheme would have to be completed within the established project timescale and within the existing £4.2m local authority budget allocated to the new school. To their credit, the team excelled in the


task. The Passivhaus solution developed by the team is a handsome timber and brick- clad school where the building works had to ensure a comfortable learning environment without expensive energy saving add- ons. This pragmatic, low energy solution was recognised at the CIBSE Building Performance Awards, where the scheme won the New Build Project of the Year (value up to £5m) category. The judges said the scheme demonstrated ‘Good energy performance without green bling’. To design a low energy Passivhaus standard


school capable of being constructed within the confines of a conventional building budget required an extremely efficient and cost-effective design solution. Unsurprisingly,


www.cibsejournal.com


the low energy strategy has informed and influenced every decision about the building’s form and servicing strategies. ‘As architects, what we like about Passivhaus is that we work more closely with the engineers from early in the design to ensure the building does all the hard work in creating occupant comfort and saving energy without the need for a lot of complicated add-on stuff later in the design,’ says Jonathan Hines, director of architect Architype. A low energy solution was developed


using Passivhaus Planning Package (PHPP) analysis software. The school’s two-storey form, for example, is the result of PHPP. Two rows of classrooms are arranged at angles to create a wedge-shaped double height activity street at the heart of the school. To the East of the street is a double-height school hall. ‘The two-storey, timber-framed solution is more compact and hence more energy efficient because the ratio of external area to floor area is better,’ Hines explains. In addition, the wedge-shaped building


has been designed to take advantage of solar gain in the winter by orientating the school’s main elevation to face south. Most of the classrooms are on this elevation. Brise soleil and an overhanging roof limit solar gains and prevent these rooms overheating in summer. East and west facing glazing is kept to a minimum because of the difficulty in controlling solar gain on these elevations. The building’s low energy credentials are


The caterers were persuaded to use electric induction cooking, which means there are no combustion gases to be removed and waste heat from around the pans is minimised


PROJECT TEAM


Client: Wolverhampton City Council Architect: Architype Passivhaus consultants: Elemental Solutions Building services engineers: E3 Consulting Engineers Structure: Price & Myers QS: Smith Thomas Consult Contractor: Thomas Vale Construction Certifier: Warm Low Energy


May 2013 CIBSE Journal 31


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64