This page contains a Flash digital edition of a book.
N2 Electrical Trade Theory|The Easy Way! 63


Tis, in effect, results in a rotating field similar to that which would be obtained from a two-phase supply. Te torque produced in this manner is enough to start the motor under light starting load conditions. Tese motors are referred to as resistance-start motors.


In order to increase the starting torque, the phase displacement between the current through the running winding and the current through the auxiliary winding must be increased. In the case of capacitor-start motors, the phase displacement between the running winding and auxiliary winding is increased by connecting a capacitor in series with the auxiliary winding.


To increase the running torque of the motor, the auxiliary winding is sometimes leſt connected in the circuit with a continuously rated capacitor while the motor is running.


Two common capacitor-start motors are;


• the capacitor-start, induction run motor, and • the capacitor-start, capacitor-run motor.


4.7.2 Capacitor-start, induction run motor


By connecting a suitable capacitor in series with the starting (auxiliary) winding, the current through the starting winding may be made to lead the voltage. Tus, the time-phase difference in the currents of the two windings at starting may be made nearly 900.


When the rotor reaches a certain speed, the starting winding is disconnected by means of a centrifugal switch, fig. 4.5.


Fig. 4.5 Capacitor-start induction run motor


4.7.3 Capacitor-start, capacitor-run motor


Te capacitor in series with the auxiliary winding may have one fixed value, fig. 4.6 (a), or it may have one value for starting and another value for running. One method of obtaining two values of capacitance is shown in fig. 4.6 (b). As the motor approaches operating speed, the centrifugal switch disconnects one of the capacitors.


Te capacitor-start capacitor-run motor starts and operates in much the same way as a two-phase motor and has the advantage of producing a more constant torque.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134