This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
11-09 :: September 2011


nanotimes News in Brief


the researchers have shown that the antennas can be fabricated densely over large areas using cheap colloidal lithography.


The research field of nanoplasmonics is a rapidly growing area, and concerns controlling how visible light behaves at the nanoscale using a variety of metal nanostructures. Scientists now have a whole new parameter – asymmetric material composition – to explore in order to control the light.


Nanoplasmonics can be applied in a variety of areas, says Mikael Käll, professor in the research group at Chalmers.


47


Researchers of the Chemical Engineering depart- ment and the Kavli institute of the TU Delft have demonstrated that electrons can move freely in layers of linked semiconductor nanoparticles under the influence of light. This new knowledge will be very useful for the development of cheap and effi- cient quantum dot solar cells.


Elise Talgorn, Yunan Gao, Michiel Aerts,Lucas T. Kunne- man, Juleon M. Schins, T. J. Savenije, Marijn A. van Huis, Herre S. J. van der Zant, Arjan J. Houtepen & Laurens D. A. Siebbeles: Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids, In: Nature Nanotechnology AOP, September 25, 2011, DOI:10.1038/nnano.2011.159: http://dx.doi.org/10.1038/nnano.2011.159


The nanoantenna acts as a router for red and blue light, due to the nanoparticles of gold and silver having diffe- rent optical properties. © Timur Shegai


Timur Shegai, Si Chen, Vladimir D. Miljković, Gülis Zengin, Peter Johansson, Mikael Käll: A bimetallic nano- antenna for directional colour routing, In: Nature Com- munications, Vol. 2(2011), September 2011, Article number: 481, DOI:10.1038/ncomms1490: http://dx.doi.org/10.1038/ncomms1490


http://www.chalmers.se


Masaaki Tamura, Kansas State University (U.S.) professor of anatomy and physiology, and his research team are working on several projects that use nanoparticles to treat and directly target the “bull‘s-eye”: cancer cells. Tamura has focused his research on peptide nanoparticle-based gene therapy, which is the process of treating diseases by introducing therapeutic genes. His research team is collaborating with University of Kansas researchers to develop a way to treat cancer other than current chemotherapy practices.


Tamura has found the potential for safer therapy in cationic peptide nanoparticles. This small peptide helps transfer an important gene called angiotensin


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67